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ELASTIC LOADING OF THICK-WALLED HIGH PRESSURE CYLINDERS

by e EPAIN and B.VODAR

We consider a thick-walled cylinder submitted to uniformly distributed
internal and external pressures and a tniformly distributed longitudinal
load and we cstablish the relatioms between these loads such that the cy=-
linder does not undergo plastic deformation. For this purpose we use the
criteria of Von Mises and of Tresca as well as a linecarized form of the
criterium of the intrinsic curve of lohr-Caquot. We describe a graphic me-
thod which allows the resolution of these problems in a more varied manner
than that of the calculations, Wr finish with several remarks on the condi=
tions and limits in the use of this method,

A hollow cylinder of circular cross-section ( figure 1 ) _
is submitted to internal P, » external b and longitudinal p, unifornly
distributed pressures, and the limiting relatioms, i e , the linit in
which the vessel undergoes no plastic deformatiom, between these quantities
are established,.These relations will be referred to.as elastic loading cone~
ditions. (x)

(X) Troughout this paper we will use "conditions of elastic loading® for the
French "condition de portance élastique". A bettor expression might be "elastic
limit load",
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We will establish these relations for three criteria of plasticity:
the criterium of Von Kises | that of HohrCaquot 2 and finally, that of Tresca >
The woll known foruulas of Lené give the redial{J; circunferential G ,
and longitudinal{, ptresses as functions of p , p and p in the following form 3
3 Por i ™ Fe

G’zu&i;_“['l-';_i:Q"] Fe..g-1 11]
Gomp - (1+ER)-p £ (2],

¥ aoial B

vhere k = .btbe ratio of external radius to the intermal radius of the
cylinder, Substituting these expressions into the corresponding oriteria we
obtain the desired conditions of elastic loading.
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1) Relationsof elastic loading for the oriterius of Von Mises
On expressing the principal stresses as functions of the pressures .,P ,P
2 2 (it
in the relation of Von Nisss, given by (OF — 05)'+(0g ~G5) {05 - Op)K 2 (s
wommmitionotoluﬁolo.dtngcorrq’mdingtothhcutorhm
2 2, 2 5 s
(zl_ﬁti‘st‘ {?(B-&) "'Ioc'.“‘“, ',‘“26 Pl ;
+p2 (A7) +2p (A1) -2p, p KA f)](-?. a2
where Ris tue elastic limit of the material for pure tension. The left hand
member of this expression being maximum for I" =l it is seen that plastic
deformations will occur, either first at the intermal diameter of the cylinder
whatever might be the relative values ofP,; and Pe » Or simultaneously in the
entire thicikness of the cylinder for the particular case P': -Pe =0
and D, = b o2 oyl

If we now take the case where a plastic deformation is possible, we
should write ' =["( and the inequality in the above oquation becomes equa=
lity. On fho pressure space P,_' ’ PZ ’ Pe s the surface describeaby this equality
is an elliptic cylinder with its axis pointing in the direction ( 7, 7, 7 )
The elliptic cross-secti.n varies both in dimension and orientation with ratio

= "(.e + This surface has meening only as long as P(- and Pe are positive,
ville “° p = - - A P
may be positive, negutin’&or—vzahi&ing, depending on the value and sign ( tension
or compression ) of the longitudinal load L. ,
In order to study this surfice, we transfer from the systen of axes Pe) Pe )

R s to the system V,W, Z ( both are orthonormal )’V and W being respectively,
coincident with the minor and major axes of the ellipse of the normal cross~section,
vhile Z, paralld’ to the generzting line of the elliptic cylinder is inclined at
equal angles to P""PE'FO-.

&~

( 5 ) Contribution a1'dtude de la résistance des cylindres épais elaste-—plastiques —
EPAIN R. Thése Doct. d'Université Puris 1961
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. The dimensions of the ellipse of the normal cross-section

Binor axis _ o= (m-1)
2
\/4Me=-M+1+\[FM*+10M -2 M +1
major axis _ _ Ga(Mm-1)

2

Varm-m+i- ~VZme+10M3 -2 m +1
while its orientation relative to the projections P </ P( y Pe of the axes

R, 2 ,Pe onbthe plane JV perpendicular to % is determined by the
following relations 3
[ ()G 6) 1 ' ;
ey = - P with | = angle V, P
L\ Y Ty Y ' >
where Yo/ — 3m¥(M-1) + X, ¥ Wy = 3MY(M-1)+Xs
Vi 3MAM-1)=MX, Wi 3MUM-~)=MXa

W MM gy BMYOM-H(MNX
Vi TT3MI(M-1)T(3M+) MY, W: T 3MY( M~ —(BM+I) MK

)-’g = 4M- M1k TN HIOMIZ2 Ml 5, M=ARY

For k = lycorresponding to a hypothekical cylindor of zero thickness ,
the ellipse is reduced to a line (maux-tm)uowp, « Fork = o©
corresponding to a cylinder of infinite thickness or to a capillary tube, the
ellipse has the dimensions indicated in the figure 2.
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Now, if in the pressure space we represent the load by the vector —5;
with components P ’FC P‘ we can make the following remarks $
1) plastic flow is only possible if P lies on the elliptic cylinder;
2) since the hydrostatic load is represented by a vector parallel to 3,
only the component of OF in the ylane TT is necegsary for deterining whether
the material does or does not remain elastic.

3) The ellipse corresponding to k = ©© having a finite dimension confims the
known result that a finite state of load is sufficient to create a plastic defore
mation in a cylinder od infinite thickness.

The second remark leads to the establishment of a graphic method permitting

the ruolutm of two types of Prohlons relative to elastic loading. On the first
graph A three equidistant axes P ’PC
for different values of K. For these same values one traces on transparent paper

P e are traced as well as the axes V

a series of graphs B Npresentinsthe corresponding ellipses. The number of these
graphs is limited both by the allowed interpolations and the fact that k = 4
constitutes a limiting value in practice. Finally one obtains a new simplification
by scaling the designs to 3/2 and on letting Ja=1.

The first problem is the following : i given k and Jo determine wigther

this cylinder maim elastic under the loads P* Pe P P@ « One mporinpom
the graphs A en B making the axes V coincide and one traces the projection of OP

on the plane TT whose components onto P ’P F;. are respectively P‘76'o 5
' ,%. The cylinder does or does not remain elaatic according to whither P
%uomam ( see figure 3 ) or on the ellipse.

In particular one finds the following well-known result
the maximum internal pressure P, that a cylinder can withstand elastically
in the case where F‘ is zero is equal to 8

% (4.. ‘y‘}) for a closed cylinder,

% (4,_ ‘y&‘_) /\/:'-:,:/Tv for an open cylinder,

% (4‘- ‘yﬁ't)/v,'.‘. 4-2_)3)%£4 for a plane stnam condition.
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The second type of problem can be stated as " given a cylinder characterie
zed by k and Jp and submitted to an external pressure B‘ determine Pe

such that % will be maximum and find this value®. One begins as before, then one
traces 0C = fa/. and A paralled to Fe’ and tangent to the ellipse. One then de=

duces that PC = Uo CD and P = Ga DP. ( see figure 4 ).

The determinution of the extrema ca be done by the preceding method and this
allows one to obtain the results shown in the table belows.

MAXIMUM  VALUE GIVEN VALUE CORRESFONDING VALUE
s 0o (1.4 Jo
p=r+G0-5) Fe (Rl A A
2;03 - 4
=53 *R b | R=imCrakh

h= &f%m“ | k=Rl
e=brROR) | k| p=ked

Ro= bt 3F A h=R* )
FC = E-l- v;U4+4/3g~ Fe F~=ﬂ_%(4-€-7)/v-ﬁ




For simplification we utilize a linearized intrinsic curve obtained by
drawing the tangents D to the circles of diameters Qb and U¢ vwhere Ui and Q¢
are the absolute values of the elastic limits for pure tension and pure compression
( see figure 5 ).

There is plastic flow at a point in the wall of the cylinder if the local
values of the congtraints are such that the circle of Mohr constructed by the ma jor
0';1 and the minor O stresses is tangent to or cuts the lines D .

In the limiting case where this circle is tangent to the lines D the.
figure S5.oshows that one has &
raddus of the Mohr circle = %%% = becos o — 0:%0_'-_-‘ SN o

where a_:'ji-__c_'g ropresents the abscissa of the center of thiscircle
2
while c-a :. U‘l"go( i‘_ b are the equatiomsrepresenting the tangents D,
On noting that one can write 9|ﬂ¢(=-%—.::é:—_c-£-
bcoso( gg-ﬂ.g_-‘_ in the preceding equation, the necessary condition that the
eylinder e&atic is expressed by the inequality

Aeccording to the relative magnitudes of the principal stresses this equa-
tion is written in six different ways $

02-%0.'5 L%, for TG>R>I,

Jo — 3—10-‘2— <G , 4Fcr' %)03707«’-:

TB-% <%, for 53>R>%,

the three other forms being obtained by permutation of Uy and Ty

g A




When one expresses the principal stresses as a function of the
1dads in the &mm inequalities there appears on the left hand side
the expression .;_('L which is always positive since CE.) O
-7
for these thm cases. me result of this circumstance is that these expressions
become mim for £ =¥¢ . Mis eignifies that, just as for the criterium of Vo

Hisan, plastic flow begins at the internal diameter.

In the linit and with T = T these inequalities above are written in
the following form &

\
rehr 240 0 Gl
\ i) cvnlly =S e

ﬂ,lf!. “‘705%"'&%‘(7*07/”52] i =o:2_3£-;_1 For Tg >'<§,> Jx

-R +%§_P‘.=0:‘ | for Uz> T > O
—P¢Ig—ﬁi+l’ 12?2% g=0G  for G>U&>0
— R ( 1+0s¢ ) ot £‘-—- o
o 136;75- JE)J"'P?—(EW for B
; ,_g+ = pp =0- fer O >0 >3

The equations represent six planes in the space P‘_ 'P( 4 Pe ,

We now seek to detomino the contours formed by their M on the planes
perpendicular to the line P‘gP(”Pe.
In order to do this we will utilize a newcoordinate system V, W, Z where the axis
Z coinoides with tho line P =P, =P while i is at the intorsection of the
plane formed by the coordinates p, and pe and the plane 77 perpendicular to Z and
‘ passing through the origin. Under these conditions the new orthonommal vectors are
written as functions of the old coomiinate system in the following way
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Ve -Ye® +%eh-Yeh
Ve -zl + %ER
T3 E + UER +GR

Inversely the old orthonormal vectors Db and—. i in
y P-C > Fe F& are given

the new aysten by $
Bo= %V - ¥+ n%
= %V +%%
h=-%V + YV + )%

It follows that the equations of the six planes described above are
written in the new coordinate system as indicated below ( for Jo i Je )

e 3Rt W 1-F /0 :
V= 755;1:703 oy W e VELT I+20"/(r£

V— 3fe+ , TG gs Ve
V=Xl *@ ] e+ i 03/02’

1-03/02-
(3)Vx—-{ﬁé.'ﬁc‘w ‘z+0,../a_c VIZ Z"'Q—/O'
WV= Y305 /0 3b2+1 ds
V=l Bt W tiere VT E - e
Ar+1 O 0s Ve
' G?.[ Rl +1]W+VI'Z+ el

' 1~ 0o
CWe-riwim W2 a0 VZZ + 7+za:/¢r

() V= —

Now on cutting these planes by the plane Z = ‘constant we obtain six lines

which form the desired contour.
One notes that the slopes of these lines vary with the ratio 0';/0'2




and k =%—5—- (except for the lines 3 and 3 ) 8

1
Further their ordinabe intersections are functions of (Jg /a‘c and
in particular, of Z -%—(p‘ +P{ -rpc) ) This signifies
that,contrary to the criterium of Mises, the extent of the elastic domain in the
present case is no longer independant of the wdmatamoad vector.

One can further note that with the system of -axes V, W, Z, the V axis coincides
with the projection Pl) of P[ ontbéh’ane 7T . The figure 6 shows how one
can easily trace the contour corresponding to given values of the constants
ds,0c , k, and of the variable Z. The fact that the lines 1 and 3' besides 3
and 1' :LntemectonP(’ whilo the lines 1' and 2' as well as 1 and 2 and also
3 and 3' intersect on Pe, reduces from 12 to 6 the number of coordinates to be
calculated,

how
The figure 7 shows fthe elastic dowain enlarges as Z increases, the
lines forming the contour remaining paralle] to themselves,

The graphic method described in the preceding paragraph is also valid
in this case. It is slightly complicated by the fact that the dimensions of the
elastic zone must be calculated as a function of Z, but on the other hand it is
conaidenbly sinplifiod w the fact that the axes V and Umﬁ.ud relative to

theaxaaP‘ /% Pe

letting (Jo = O¢ the lines D of the plane G, 0 become
parallel and the criterium of Mohr-Caquot reduces to that of Tresca. The equa=
tions of the six preceding planes are nov 3

Popift —phr ip= 2,




In the space V, W, Z defined in the preceding section the equations of these
planes are reduced to 3

1 71 24 —_— "
PRl S e o

Since the coordinate Z no longer appears in these expressions, these
planes are normal to the plane 7T , They form an irregular hexagonal prism
insoribed in the elliptic cylinder of Mises. The magnitude of the slastic demain
is once again, as in the case of Mises, independant of the hydrostatic component
of the 1oad vector, The intersection of this prism with the plane TT gives the
contour of the elastic domain. The figure 8 shows that this contour can be tre-
ced in a remarkably simple way, the other half of the bexagon being symmetric
with respect to the origine.

For k = 3, side 1 of the hexagon almost comgides with the perpendicular to P:
(the position of 1 in the figure corresponding to k = OO ). This shows that
increasing k above the value 3 adds only a very small gain to the elastic loe=
ding. hr‘k-l,theh.xagonhudw@dtothalmp; ( zero surface ).

The study of the maxima allows one to rediscover the following welle
knmrmltlforaampe there exisls, contrary to the criterium of Mises
antnfinitemnhgpfgpnuot PI for which P': is maximum and equal to

%-(f- t)g This results from the fact that the tangent of the comtour

d!‘.Par el toP; coincides with side 2 of the hexagon. The extremities of

the load vectors corresponding to the cases of cylinders open, closed, and in

plane strain condition end respectively at the points a, by and ¢ of the figure 8,



In the use of these methods we have hpuo!.ﬂf assumed that the loads
increase proportional to the same parameter. This condition is automatically satis-
Mtortbmofopenmdclondoynm.anuuforacwlmmphm
strain condition. However, it is no longer true for the case of shrink fits, where
one applies first P. followed then by p‘- « The methed presented here is neverthe-
less always valid on the condition that it is utilized in two steps.

In that which concerns the limits of validity of these methods we can
make the following remerks. For a hydrostatic load PR—P(."'P[ pe,

of large -gntnd. the relation stress-strain should no longer be line.r. in other
mm.mhwwmtobomm.hnwrkofwm on the comprese
eibility of pure iron shows that already at 12,000 Atmospheres there exists small
divergences from linearity.

Further if the deformations become large the relations between the components of
the deformation tensor and the spatial derivatives of the components of the dis-
placements become quadratic. At this point, the Lamd equations which are formed
from the linear forms at these relations are no longer valid, and the relations |
of elastic loading, which are derived from them, must be entirely reconsidered.
Thus, even, if the criterium of plasticity used, as in the case for the criteris
of Hises, Mohr-Caquot and Tresca, implies the conditiom that a hydrostatic cons-
traint does not cause plastic defommation, it does not automatically result from
mm.mmmtuu& P:.':"P{:Pe protects the cylinder
from all plastic Tlow.

On the other hand, if the loads though very large are not isotropic
( R#,;(:,e Pe ) one can think that a'plastie’lav governs the i/ -
deformation beyond the elastic regime of Hookes law. On other words, there is no
;hu'ofaaenl‘ law,consequently, the relations of elastie loading should
remain valid, O ooty 9N

(6) ™e Puysios of High Pressure Bridgman P.W, G. Bell & Sons London 2nd Bd. 1949
p.l".
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